On the Analysis of a Label Propagation Algorithm for Community Detection

نویسندگان

  • Kishore Kothapalli
  • Sriram V. Pemmaraju
  • Vivek Sardeshmukh
چکیده

This paper initiates formal analysis of a simple, distributed algorithm for community detection on networks. We analyze an algorithm that we call Max-LPA, both in terms of its convergence time and in terms of the “quality” of the communities detected. Max-LPA is an instance of a class of community detection algorithms called label propagation algorithms. As far as we know, most analysis of label propagation algorithms thus far has been empirical in nature and in this paper we seek a theoretical understanding of label propagation algorithms. In our main result, we define a clustered version of Erdös-Rényi random graphs with clusters V1, V2, . . . , Vk where the probability p, of an edge connecting nodes within a cluster Vi is higher than p ′, the probability of an edge connecting nodes in distinct clusters. We show that even with fairly general restrictions on p and p′ (p = Ω ( 1 n1/4− ) for any > 0, p′ = O(p), where n is the number of nodes), Max-LPA detects the clusters V1, V2, . . . , Vn in just two rounds. Based on this and on empirical results, we conjecture that Max-LPA can correctly and quickly identify communities on clustered Erdös-Rényi graphs even when the clusters are much sparser, i.e., with p = c log n n for some c > 1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Community Detection using a New Node Scoring and Synchronous Label Updating of Boundary Nodes in Social Networks

Community structure is vital to discover the important structures and potential property of complex networks. In recent years, the increasing quality of local community detection approaches has become a hot spot in the study of complex network due to the advantages of linear time complexity and applicable for large-scale networks. However, there are many shortcomings in these methods such as in...

متن کامل

Classification of encrypted traffic for applications based on statistical features

Traffic classification plays an important role in many aspects of network management such as identifying type of the transferred data, detection of malware applications, applying policies to restrict network accesses and so on. Basic methods in this field were using some obvious traffic features like port number and protocol type to classify the traffic type. However, recent changes in applicat...

متن کامل

Role-based Label Propagation Algorithm for Community Detection

Community structure of networks provides comprehensive insight into their organizational structure and functional behavior. LPA is one of the most commonly adopted community detection algorithms with nearly linear time complexity. But it suffers from poor stability and occurrence of monster community due to the introduced randomize. We note that different community-oriented node roles impact th...

متن کامل

Semi-supervised Evidential Label Propagation Algorithm for Graph Data

In the task of community detection, there often exists some useful prior information. In this paper, a Semi-supervised clustering approach using a new Evidential Label Propagation strategy (SELP) is proposed to incorporate the domain knowledge into the community detection model. The main advantage of SELP is that it can take limited supervised knowledge to guide the detection process. The prior...

متن کامل

A semi-synchronous label propagation algorithm with constraints for community detection in complex networks

Community structure is an important feature of a complex network, where detection of the community structure can shed some light on the properties of such a complex network. Amongst the proposed community detection methods, the label propagation algorithm (LPA) emerges as an effective detection method due to its time efficiency. Despite this advantage in computational time, the performance of L...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013